A bound for functions defined on a normed space

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2007 J. Phys. A: Math. Theor. 404087
(http://iopscience.iop.org/1751-8121/40/15/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.108
The article was downloaded on 03/06/2010 at 05:06

Please note that terms and conditions apply.

A bound for functions defined on a normed space

M I Gil'
Department of Mathematics, Ben Gurion University of the Negev, PO Box 653, Beer-Sheva 84105, Israel
E-mail: gilmi@cs.bgu.ac.il

Received 30 January 2007, in final form 27 February 2007
Published 23 March 2007
Online at stacks.iop.org/JPhysA/40/4087

Abstract

Let X be a complex normed space and f a complex valued function defined on X. Assume that $f(A+\lambda B)(\lambda \in \mathbb{C})$ is an entire function for all $A, B \in X$ and there is a scalar monotone non-decreasing function G defined on $[0, \infty)$, such that $|f(A)| \leqslant G\left(\|A\|_{X}\right)(A \in X)$. It is proved that $|f(A)-f(B)| \leqslant\|A-B\|_{X} G\left(1+\frac{1}{2}\left(\|A+B\|_{X}+\|A-B\|_{X}\right)\right)$.

Applications of this inequality to perturbations of the regularized determinants of the von Neumann-Schatten operators are also discussed.

PACS numbers: $02.30 . \mathrm{Sa}, 02.30 . \mathrm{Tb}$
Mathematics Subject Classification: 47A50, 47B10

1. The main result

Let X be a complex normed space with a norm $\|\cdot\|_{X}$ and f a complex valued function defined on X. Assume that $f(A+\lambda B)(\lambda \in \mathbb{C})$ is an entire function for all $A, B \in X$ and there is a scalar monotone non-decreasing function G defined on $[0, \infty)$, such that

$$
\begin{equation*}
|f(A)| \leqslant G\left(\|A\|_{X}\right)(A \in X) \tag{1.1}
\end{equation*}
$$

In the paper [8] the inequality

$$
\begin{equation*}
|f(A)-f(B)| \leqslant\|A-B\|_{X} G\left(1+\|A\|_{X}+\|B\|_{X}\right) \quad(A, B \in X) \tag{1.2}
\end{equation*}
$$

was established. It is very useful for various applications, in particular, in the theory of the von Neumann-Schatten operators, Ruston-Grotendieck algebras, Fredholm determinants and in the theory of oscillations; cf $[4,6]$ and references therein.

In this paper we make inequality (1.2) sharper and consider applications of our inequality to perturbations of the determinants of the von Neumann-Schatten operators.

Theorem 1.1. Let f be a complex valued function defined on X, such that the function $f(A+\lambda B)(\lambda \in \mathbb{C})$ is entire for all $A, B \in X$. In addition, let there be a monotone nondecreasing function $G:[0, \infty) \rightarrow[0, \infty)$, such that (1.1) holds. Then

$$
|f(A)-f(B)| \leqslant\|A-B\|_{X} G\left(1+\frac{1}{2}\|A+B\|_{X}+\frac{1}{2}\|A-B\|_{X}\right) \quad(A, B \in X)
$$

Proof. Put

$$
g(\lambda)=f\left(\frac{1}{2}(A+B)+\lambda(A-B)\right)
$$

Then $g(\lambda)$ is an entire function and thanks to the residue theorem,
$f(A)-f(B)=g(1 / 2)-g(-1 / 2)=\frac{1}{2 \pi \mathrm{i}} \oint_{|z|=1 / 2+r} \frac{g(z) \mathrm{d} z}{(z-1 / 2)(z+1 / 2)} \quad(r>0)$.
So

$$
|g(1 / 2)-g(-1 / 2)| \leqslant(1 / 2+r) \sup _{|z|=1 / 2+r} \frac{|g(z)|}{\left|z^{2}-1 / 4\right|}
$$

But

$$
\begin{gathered}
\left|z^{2}-1 / 4\right|=\left|(r+1 / 2)^{2} \mathrm{e}^{\mathrm{i} 2 t}-1 / 4\right| \geqslant(r+1 / 2)^{2}-1 / 4=r^{2}+r \\
\\
\left(z=\left(\frac{1}{2}+r\right) \mathrm{e}^{\mathrm{i} t}, 0 \leqslant t<2 \pi\right) .
\end{gathered}
$$

In addition,

$$
\begin{aligned}
|g(z)| & =\left|f\left(\frac{1}{2}(A+B)+\lambda(A-B)\right)\right|=\left|f\left(\frac{1}{2}(A+B)+(r+1 / 2) \mathrm{e}^{\mathrm{i} t}(A-B)\right)\right| \\
& \leqslant G\left(\frac{1}{2}\|A+B\|_{X}+\left(\frac{1}{2}+r\right)\|A-B\|_{X}\right) \quad(|z|=1 / 2+r) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
|f(A)-f(B)| & =|g(1 / 2)-g(-1 / 2)| \leqslant \frac{1 / 2+r}{r^{2}+r} G\left(\frac{1}{2}\|A+B\|_{X}\right. \\
& \left.+\left(\frac{1}{2}+r\right)\|A-B\|_{X}\right) \leqslant \frac{1}{r} G\left(\frac{1}{2}\|A+B\|_{X}+\left(\frac{1}{2}+r\right)\|A-B\|_{X}\right)
\end{aligned}
$$

Taking $r=\|A-B\|_{X}^{-1}$, we get the required result.
Clearly, theorem 1.1 improves (1.2). It supplements the very interesting recent perturbation results; cf $[1,2,7,9]$ and references therein.

2. Perturbations of determinants

In this section, we apply theorem 1.1 to perturbations of determinants. Everywhere below A and B are linear operators in a separable Hilbert space H. For an integer $p \geqslant 1$, let S_{p} be the Neumann-Schatten ideal of compact operators in H having the finite norm $N_{p}(A)=\left[\operatorname{Trace}\left(A A^{*}\right)^{p / 2}\right]^{1 / p}$ where A^{*} is the adjoint. By $\lambda_{j}(A)(j=1,2, \ldots)$ we denote the eigenvalues of A taking with their multiplicities and arranged in the decreasing order: $\left|\lambda_{j}(A)\right| \geqslant\left|\lambda_{j+1}(A)\right|$.

First let $H=\mathbb{C}^{n}$ be the complex n-dimensional Euclidean space.
Corollary 2.1. Let A and B be linear operators in \mathbb{C}^{n}. Then for any integer $p \geqslant 1$,
$|\operatorname{det}(A)-\operatorname{det}(B)| \leqslant \frac{N_{p}(A-B)}{n^{n / p}}\left(1+\frac{1}{2}\left(N_{p}(A+B)+N_{p}(A-B)\right)\right)^{n}$.
Indeed, due to the inequality for the arithmetic and geometric mean values,

$$
|\operatorname{det}(A)|=\prod_{k=1}^{n}\left|\lambda_{k}(A)\right| \leqslant\left(\frac{1}{n} \sum_{k=1}^{n}\left|\lambda_{k}(A)\right|^{p}\right)^{n / p} \leqslant \frac{1}{n^{n / p}} N_{p}^{n}(A)
$$

Now the required result is due to theorem 1.1.

Furthermore, let $A \in S_{1}$ and I be the unit operator. Then

$$
|\operatorname{det}(I-A)|=\left|\prod_{j=1}^{\infty}\left(1-\lambda_{j}(A)\right)\right| \leqslant \prod_{j=1}^{\infty} \mathrm{e}^{\left|\lambda_{j}(A)\right|} \leqslant \mathrm{e}^{N_{1}(A)}
$$

Now theorem 1.1 implies
Corollary 2.2. Let $A, B \in S_{1}$. Then

$$
|\operatorname{det}(I-A)-\operatorname{det}(I-B)| \leqslant e N_{1}(A-B) \exp \left[\frac{1}{2}\left(N_{1}(A+B)+N_{1}(A-B)\right)\right]
$$

Recall that for an $A \in S_{p}(p \geqslant 2)$ the regularized determinant is defined as

$$
\operatorname{det}_{p}(A):=\prod_{j=1}^{\infty}\left(1-\lambda_{j}(A)\right) \exp \left[\sum_{m=1}^{p-1} \frac{\lambda_{j}^{m}(A)}{m}\right]
$$

The following inequality is valid:

$$
\begin{equation*}
\operatorname{det}_{p}(A) \leqslant \exp \left[c_{p} N_{p}^{p}(A)\right] \tag{2.1}
\end{equation*}
$$

where constant c_{p} depends on p only, cf [3, p 1106], [4, p 194]. Besides, $c_{2} \leqslant 1 / 2$, cf [5, Section IV.2]. Below we prove that

$$
\begin{equation*}
c_{p} \leqslant \frac{1}{p\left(1-\sqrt[p-2]{\frac{p}{p+1}}\right)} \quad(p>2) \tag{2.2}
\end{equation*}
$$

Now theorem 1.1 implies
Corollary 2.3. Let $A, B \in S_{p}, p \geqslant 2$. Then
$\left|\operatorname{det}_{p}(A)-\operatorname{det}_{p}(B)\right| \leqslant N_{p}(A-B) \exp \left[c_{p}\left(1+\frac{1}{2}\left(N_{p}(A+B)+N_{p}(A-B)\right)\right)^{p}\right]$.
Let us prove inequality (2.2). To this end consider the function

$$
f(z):=\operatorname{Re}\left(\ln (1-z)+\sum_{m=1}^{p-1} \frac{z^{m}}{m}\right) \quad(z \in \mathbb{C}) .
$$

For $r \equiv|z|<1$,
$|f(z)|=\left|\sum_{m=p}^{\infty} \frac{z^{m}}{m}\right| \leqslant \sum_{m=p}^{\infty} \frac{r^{m}}{m}=\int_{0}^{r} \sum_{m=p}^{\infty} s^{m-1} \mathrm{~d} s=\int_{0}^{r} s^{p-1} \sum_{k=0}^{\infty} s^{k} \mathrm{~d} s=\int_{0}^{r} \frac{s^{p-1} \mathrm{~d} s}{1-s}$.
Hence for any $w \in(0,1)$,

$$
\begin{equation*}
|f(z)| \leqslant \frac{r^{p}}{p(1-w)} \quad(r<w) \tag{2.3}
\end{equation*}
$$

Furthermore, take into account that

$$
\left|(1-z) \mathrm{e}^{z}\right|^{2}=\left(1-2 \operatorname{Re} z+r^{2}\right) \mathrm{e}^{2 \operatorname{Re} z} \leqslant \mathrm{e}^{-2 \operatorname{Re} z+r^{2}} \mathrm{e}^{2 \operatorname{Re} z}=\mathrm{e}^{r^{2}} \quad(z \in \mathbb{C})
$$

since $1+x \leqslant \mathrm{e}^{x}, x \in \mathbb{R}$. So
$\left|(1-z) \exp \left[\sum_{m=1}^{p-1} \frac{z^{m}}{m}\right]\right|=\left|(1-z) \mathrm{e}^{z}\right|\left|\exp \left[\sum_{m=2}^{p-1} \frac{z^{m}}{m}\right]\right| \leqslant \exp \left[r^{2}+\sum_{m=3}^{p-1} \frac{r^{m}}{m}\right] \quad(p>2)$.
Therefore,

$$
f(z) \leqslant r^{2}+\sum_{m=3}^{p-1} \frac{r^{m}}{m} \quad(z \in \mathbb{C})
$$

But for any $w \in(0,1)$,

$$
\begin{aligned}
{\left[r^{2}+\sum_{m=2}^{p-1} \frac{r^{m}}{m}\right] r^{-p} \leqslant h_{p}(w) \quad(r \geqslant w) \quad \text { where } } \\
h_{p}(w)=w^{-p}\left[w^{2}+\sum_{m=3}^{p-1} \frac{w^{m}}{m}\right] \quad(p>2) .
\end{aligned}
$$

Thus $f(z) \leqslant h_{p}(w) r^{p}(r \geqslant w)$. This inequality and (2.3) imply
$f(z) \leqslant q_{p} r^{p} \quad(z \in \mathbb{C}, \quad p>2) \quad$ where

$$
q_{p}:=\min _{w \in(0,1)} \max \left\{h_{p}(w), \frac{1}{p(1-w)}\right\} .
$$

But the function $h_{p}(w)$ decreases in $w \in(0,1)$ and $\frac{1}{p(1-w)}$ increases. So the minimum is attained when $h_{p}(w)=\frac{1}{p(1-w)}$. This equation is equivalent to the equation

$$
\begin{equation*}
x^{p-2}=p(1-x)\left[1+\sum_{m=1}^{p-3} \frac{x^{m}}{m+2}\right] \quad(p>2) . \tag{2.4}
\end{equation*}
$$

To check that this equation has a unique positive root $x_{0}<1$, rewrite it as

$$
g(x):=\frac{x^{p-2}}{p(1-x)}-\left(1+\sum_{m=3}^{p-1} \frac{x^{m-2}}{m}\right)=0 .
$$

Clearly, $g(0)=-1, g(x) \rightarrow+\infty$ as $x \rightarrow 1-0$. So (2.4) has at least one root from $(0,1)$. But from (2.4) it follows that a root from $(1, \infty)$ is impossible. Moreover, (2.4) is equivalent to the equation

$$
\frac{1}{p(1-x)}=\frac{1}{x^{p-2}}+\sum_{m=3}^{p-1} \frac{x^{m-p}}{m}
$$

The left-hand side of this equation increases and the right-hand part decreases on $(0,1)$. So the positive root is unique. Thus $q_{p}=1 / p\left(1-x_{0}\right)$. Furthermore, from (2.4) it follows

$$
x_{0}^{p-2} \leqslant p\left(1-x_{0}\right) \sum_{m=0}^{p-3} x_{0}^{m}=p\left(1-x_{0}^{p-2}\right)
$$

since

$$
\sum_{m=0}^{p-3} x_{0}^{m}=\frac{1-x_{0}^{p-2}}{1-x_{0}}
$$

This implies that

$$
x_{0} \leqslant \sqrt[p-2]{\frac{p}{p+1}} \quad \text { and thus } \quad q_{p} \leqslant \frac{1}{p\left(1-\sqrt[p-2]{\frac{p}{p+1}}\right)}
$$

But thanks to (2.3),

$$
\operatorname{det}_{p}(A) \leqslant \prod_{j=1}^{\infty} \mathrm{e}^{q_{p}\left|\lambda_{j}(A)\right|^{p}}=\exp \left[q_{p} \sum_{k=1}^{\infty}\left|\lambda_{j}(A)\right|^{p}\right] \leqslant \exp \left[q_{p} N_{p}^{p}(A)\right] .
$$

This proves (2.2).

Acknowledgment

This research was supported by the Kamea fund of Israel.

References

[1] Cai J and Chen G 2004 Perturbation analysis for the Drazin inverses of bounded linear operators on a Banach space J. Math. Res. Exp. 24 421-9
[2] Caliceti E, Graffi S and Sjöstrand J 2005 Spectra of $P T$-symmetric operators and perturbation theory J. Phys. A: Math. Gen. 38 185-93
[3] Dunford N and Schwartz J T 1963 Linear Operators: Part II. Spectral Theory (New York: Interscience)
[4] Gohberg I, Golberg S and Krupnik N 2000 Traces and Determinants of Linear Operators (Basle: Birkháuser)
[5] Gohberg I C and Krein M G 1969 Introduction to the Theory of Linear Nonselfadjoint Operators (Trans. Mathem. Monographs vol 18) (Providence, RI: American Mathematical Society)
[6] Magnus W and Winkler S 1996 Hill's Equations (New York: Wiley)
[7] Pietro A, González M and Martinón A 2003 On the perturbation classes of continuous semi-Fredholm operators Glasgo Math. J. 45 91-5
[8] Seiler E and Simon B 1975 An inequality for determinants Proc. Natl Acad. Sci. 72 3277-8
[9] Su W and Zhong H 2006 The generalized West decomposition of operators and other compact perturbation problems Acta Math. Sin., Engl. Ser. 22 515-22

