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Abstract

Let X be a complex normed space and f a complex valued function defined on
X. Assume that f(A + AB)(A € C) is an entire function for all A, B € X and
there is a scalar monotone non-decreasing function G defined on [0, c0), such
that | f(A)| < G(J|Allx)(A € X). Itis proved that

|£(A) = f(B) < |A = BlxG(1+ 5(lA+ Blix + 1A = Blix)).

Applications of this inequality to perturbations of the regularized determinants
of the von Neumann—Schatten operators are also discussed.

PACS numbers: 02.30.Sa, 02.30.Tb
Mathematics Subject Classification: 47A50,47B10

1. The main result

Let X be a complex normed space with a norm ||-||x and f a complex valued function defined
on X. Assume that f(A + AB)(A € C) is an entire function for all A, B € X and there is a
scalar monotone non-decreasing function G defined on [0, c0), such that

|f (A < G(IA]Ix)(A € X). (1.1)
In the paper [8] the inequality
|f(A) = fFB) < 1A= BlxG + [|Allx + | Bllx) (A,BeX) (1.2

was established. It is very useful for various applications, in particular, in the theory of the
von Neumann—Schatten operators, Ruston—Grotendieck algebras, Fredholm determinants and
in the theory of oscillations; cf [4, 6] and references therein.

In this paper we make inequality (1.2) sharper and consider applications of our inequality
to perturbations of the determinants of the von Neumann—Schatten operators.
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Theorem 1.1. Let f be a complex valued function defined on X, such that the function
f(A+AB)Y(\ € C) is entire for all A, B € X. In addition, let there be a monotone non-

decreasing function G : [0, co) — [0, 00), such that (1.1) holds. Then
|f(A) — f(B)| < |A—BllxG(1+5|A+B|x+5lA— Blx) (A, B € X).

Proof. Put
g = f(3(A+B)+ 1A — B)).
Then g(X) is an entire function and thanks to the residue theorem,

_ o _ L g(z)dz
f(A) = f(B)=g(1/2) —g(=1/2) = 271 P G 1DG+1)2) (r > 0).
So
lg(2)]
lg(1/2) — g(=1/2)| < (1/2+7) lz‘illlgw 214
But

12— 1/4 = |(r+1/2)%e¥ —1/4| > r+1/2)> = 1/4 =r*+r
(z = (% +r)e”,0 <t< 2n).
In addition,
lg@)| = |f(53(A+B)+MA - B))| = |f(3(A+B)+ (r +1/2) (A — B))|
< G(3IIA+Blx+ (3 +7)IIA = Blix) (2] =1/2+7r).
Therefore
1£(A) = f£(B) = g(1/2) — g(—1/2)| < EZG(31A + Bllx
+(5+7)I1A = Bllx) < 1G(51A+ Blx + (5 +7)A = Bllx).
Taking r = ||A — B||}_(1, we get the required result.

O

Clearly, theorem 1.1 improves (1.2). It supplements the very interesting recent

perturbation results; cf [1, 2, 7, 9] and references therein.

2. Perturbations of determinants

In this section, we apply theorem 1.1 to perturbations of determinants. Everywhere below
A and B are linear operators in a separable Hilbert space H. For an integer p > 1,
let S, be the Neumann—Schatten ideal of compact operators in H having the finite norm
N,(A) = [Trace(AA*)P/?]'/P where A* is the adjoint. By Aj(A) (j =1,2,...) we denote
the eigenvalues of A taking with their multiplicities and arranged in the decreasing order:

1A; (A)] = [Ajs1 (A
First let H = C" be the complex n-dimensional Euclidean space.

Corollary 2.1. Let A and B be linear operators in C". Then for any integer p > 1,

N,(A—B) 1 "
AL (1 + S (Ny(A+B)+ Ny(A - B))> .

|det(A) — det(B)| <
nh/p

Indeed, due to the inequality for the arithmetic and geometric mean values,

n n n/p
1 1
= — P n
|det(A)[ = k|_|l Ak (A)] < (n kE_l 1A (A)] ) S N, (A).
Now the required result is due to theorem 1.1.
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Furthermore, let A € S| and / be the unit operator. Then
oo
|det(I — A)| = 1_[(1 —2;(A)| < ]_[eIA DI M@,
j=1
Now theorem 1.1 implies
Corollary 2.2. Let A, B € S;. Then
|det(/ — A) — det(/ — B)| < eNi(A — B) exp[3(N1(A + B) + N1 (A — B))].

Recall that for an A € S,(p > 2) the regularized determinant is defined as

o —mA)
det, (A) == [ J(1 = 2;(A)) exp [Z ’m }

j=1 m=1

The following inequality is valid:
det, (A) < exp[c, N} (A)] 2.1

where constant ¢, depends on p only, cf [3, p 1106], [4, p 194]. Besides, ¢; < 1/2, cf
[5, Section IV.2]. Below we prove that

1
R — ( 2). (2.2)
T

Now theorem 1.1 implies
Corollary 2.3. Let A, B € S,, p > 2. Then
|det,,(A) — det,(B)| < N,(A — B)exp[c,(1+3(N,(A+B)+N,(A— B))"].

Let us prove inequality (2.2). To this end consider the function

r=1
Z
f(@) :=Re (ln(l -2+ E Z) (z € C).

m=1

Forr = |z| <1,

7" Oorm r X r 100 . r¢r=ldg
r@i= (3250 —=f s’"_ds=/s’" sds=/ .
Hence for any w € (O, ),

P
lf@ < ——— (r < w). (2.3)
p(l—w)

Furthermore, take into account that

(1 —2) ' = (1 —2Rez + 1) e?Rer L e Rea ez — ¢ (z €0),

since l +x <e',x € R. So

r=1l
(I —z)exp [Z %}

m=1

m

p—1

) r
+§ — 2).
exp|:r m=3m:| (p>2)

=|(1—-2)¢e

]

exp [

Therefore,
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But for any w € (0, 1),

p—1
|:r + r_:| P<hy(w)y (r>w) where
m

m=2

p—l
hp(w) =w™" |:w2 + Z %:| (p >2).

m=3

Thus f(z) < h,(w)r? (r = w). This inequality and (2.3) imply

f@) < gpr? zeC, p=>2 where
. 1
qp = wrer}})l’ql) max {hp(w), —p(l — ) } .

increases. So the minimum is

But the function £ ,(w) decreases in w € (0, 1) and ST

attained when A ,(w) = This equation is equivalent to the equation

1
p—w)’

m

p—3
S D
x p( m[ 2;m+2

To check that this equation has a unique positive root xo < 1, rewrite it as

xP2 p-1 xm—=2
g(x) = <1+Z - )zo.

m=3

:| (p>2). (2.4)

Clearly, g(0) = —1, g(x) - +oco as x — 1 — 0. So (2.4) has at least one root from (0, 1).
But from (2.4) it follows that a root from (1, co) is impossible. Moreover, (2.4) is equivalent
to the equation

1 1 e
= +
p(l —x) xp2 mZ:; m

The left-hand side of this equation increases and the right-hand part decreases on (0, 1). So
the positive root is unique. Thus g, = 1/p(1 — xp). Furthermore, from (2.4) it follows

p—3
-2
x(’; p(l—xo)Zxozpl—x )
m=0

since

0 1—)60.

This implies that

p 1
x0 < P2 and thus 9 S ———5—0-
p+l p(1="Vk)

But thanks to (2.3),

o0
MMKHWWWﬂWPZMWd<WMWW]

k=1
This proves (2.2).
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