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Abstract
Let X be a complex normed space and f a complex valued function defined on
X. Assume that f (A + λB)(λ ∈ C) is an entire function for all A,B ∈ X and
there is a scalar monotone non-decreasing function G defined on [0,∞), such
that |f (A)| � G(‖A‖X)(A ∈ X). It is proved that

|f (A) − f (B)| � ‖A − B‖XG
(
1 + 1

2 (‖A + B‖X + ‖A − B‖X)
)
.

Applications of this inequality to perturbations of the regularized determinants
of the von Neumann–Schatten operators are also discussed.

PACS numbers: 02.30.Sa, 02.30.Tb
Mathematics Subject Classification: 47A50, 47B10

1. The main result

Let X be a complex normed space with a norm ‖·‖X and f a complex valued function defined
on X. Assume that f (A + λB)(λ ∈ C) is an entire function for all A,B ∈ X and there is a
scalar monotone non-decreasing function G defined on [0,∞), such that

|f (A)| � G(‖A‖X)(A ∈ X). (1.1)

In the paper [8] the inequality

|f (A) − f (B)| � ‖A − B‖XG(1 + ‖A‖X + ‖B‖X) (A,B ∈ X) (1.2)

was established. It is very useful for various applications, in particular, in the theory of the
von Neumann–Schatten operators, Ruston–Grotendieck algebras, Fredholm determinants and
in the theory of oscillations; cf [4, 6] and references therein.

In this paper we make inequality (1.2) sharper and consider applications of our inequality
to perturbations of the determinants of the von Neumann–Schatten operators.

1751-8113/07/154087+05$30.00 © 2007 IOP Publishing Ltd Printed in the UK 4087

http://dx.doi.org/10.1088/1751-8113/40/15/003
mailto:gilmi@cs.bgu.ac.il
http://stacks.iop.org/JPhysA/40/4087


4088 M I Gil’

Theorem 1.1. Let f be a complex valued function defined on X, such that the function
f (A + λB)(λ ∈ C) is entire for all A,B ∈ X. In addition, let there be a monotone non-
decreasing function G : [0,∞) → [0,∞), such that (1.1) holds. Then

|f (A) − f (B)| � ‖A − B‖XG
(
1 + 1

2‖A + B‖X + 1
2‖A − B‖X

)
(A,B ∈ X).

Proof. Put

g(λ) = f
(

1
2 (A + B) + λ(A − B)

)
.

Then g(λ) is an entire function and thanks to the residue theorem,

f (A) − f (B) = g(1/2) − g(−1/2) = 1

2π i

∮
|z|=1/2+r

g(z) dz

(z − 1/2)(z + 1/2)
(r > 0).

So

|g(1/2) − g(−1/2)| � (1/2 + r) sup
|z|=1/2+r

|g(z)|
|z2 − 1/4| .

But

|z2 − 1/4| = |(r + 1/2)2 ei2t − 1/4| � (r + 1/2)2 − 1/4 = r2 + r(
z = (

1
2 + r

)
eit , 0 � t < 2π

)
.

In addition,

|g(z)| = ∣∣f (
1
2 (A + B) + λ(A − B)

)∣∣ = ∣∣f (
1
2 (A + B) + (r + 1/2) eit (A − B)

)∣∣
� G

(
1
2‖A + B‖X +

(
1
2 + r

)‖A − B‖X

)
(|z| = 1/2 + r).

Therefore

|f (A) − f (B)| = |g(1/2) − g(−1/2)| � 1/2+r

r2+r
G

(
1
2‖A + B‖X

+
(

1
2 + r

)‖A − B‖X

)
� 1

r
G

(
1
2‖A + B‖X +

(
1
2 + r

)‖A − B‖X

)
.

Taking r = ‖A − B‖−1
X , we get the required result. �

Clearly, theorem 1.1 improves (1.2). It supplements the very interesting recent
perturbation results; cf [1, 2, 7, 9] and references therein.

2. Perturbations of determinants

In this section, we apply theorem 1.1 to perturbations of determinants. Everywhere below
A and B are linear operators in a separable Hilbert space H. For an integer p � 1,
let Sp be the Neumann–Schatten ideal of compact operators in H having the finite norm
Np(A) = [Trace(AA∗)p/2]1/p where A∗ is the adjoint. By λj (A) (j = 1, 2, . . .) we denote
the eigenvalues of A taking with their multiplicities and arranged in the decreasing order:
|λj (A)| � |λj+1(A)|.

First let H = C
n be the complex n-dimensional Euclidean space.

Corollary 2.1. Let A and B be linear operators in C
n. Then for any integer p � 1,

|det(A) − det(B)| � Np(A − B)

nn/p

(
1 +

1

2
(Np(A + B) + Np(A − B))

)n

.

Indeed, due to the inequality for the arithmetic and geometric mean values,

|det(A)| =
n∏

k=1

|λk(A)| �
(

1

n

n∑
k=1

|λk(A)|p
)n/p

� 1

nn/p
Nn

p(A).

Now the required result is due to theorem 1.1.
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Furthermore, let A ∈ S1 and I be the unit operator. Then

|det(I − A)| =
∣∣∣∣∣∣

∞∏
j=1

(1 − λj (A))

∣∣∣∣∣∣ �
∞∏

j=1

e|λj (A)| � eN1(A).

Now theorem 1.1 implies

Corollary 2.2. Let A,B ∈ S1. Then

|det(I − A) − det(I − B)| � eN1(A − B) exp
[

1
2 (N1(A + B) + N1(A − B))

]
.

Recall that for an A ∈ Sp(p � 2) the regularized determinant is defined as

detp(A) :=
∞∏

j=1

(1 − λj (A)) exp

[
p−1∑
m=1

λm
j (A)

m

]
.

The following inequality is valid:

detp(A) � exp
[
cpNp

p (A)
]

(2.1)

where constant cp depends on p only, cf [3, p 1106], [4, p 194]. Besides, c2 � 1/2, cf
[5, Section IV.2]. Below we prove that

cp � 1

p
(
1 − p−2√ p

p+1

) (p > 2). (2.2)

Now theorem 1.1 implies

Corollary 2.3. Let A,B ∈ Sp, p � 2. Then

|detp(A) − detp(B)| � Np(A − B) exp
[
cp

(
1 + 1

2 (Np(A + B) + Np(A − B))
)p]

.

Let us prove inequality (2.2). To this end consider the function

f (z) := Re

(
ln(1 − z) +

p−1∑
m=1

zm

m

)
(z ∈ C).

For r ≡ |z| < 1,

|f (z)| =
∣∣∣∣∣

∞∑
m=p

zm

m

∣∣∣∣∣ �
∞∑

m=p

rm

m
=

∫ r

0

∞∑
m=p

sm−1 ds =
∫ r

0
sp−1

∞∑
k=0

sk ds =
∫ r

0

sp−1 ds

1 − s
.

Hence for any w ∈ (0, 1),

|f (z)| � rp

p(1 − w)
(r < w). (2.3)

Furthermore, take into account that

|(1 − z) ez|2 = (1 − 2 Re z + r2) e2Re z � e−2Re z+r2
e2Re z = er2

(z ∈ C),

since 1 + x � ex, x ∈ R. So∣∣∣∣∣(1 − z) exp

[
p−1∑
m=1

zm

m

]∣∣∣∣∣ = |(1 − z) ez|
∣∣∣∣∣exp

[
p−1∑
m=2

zm

m

]∣∣∣∣∣ � exp

[
r2 +

p−1∑
m=3

rm

m

]
(p > 2).

Therefore,

f (z) � r2 +
p−1∑
m=3

rm

m
(z ∈ C).
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But for any w ∈ (0, 1),[
r2 +

p−1∑
m=2

rm

m

]
r−p � hp(w) (r � w) where

hp(w) = w−p

[
w2 +

p−1∑
m=3

wm

m

]
(p > 2).

Thus f (z) � hp(w)rp (r � w). This inequality and (2.3) imply

f (z) � qprp (z ∈ C, p > 2) where

qp := min
w∈(0,1)

max

{
hp(w),

1

p(1 − w)

}
.

But the function hp(w) decreases in w ∈ (0, 1) and 1
p(1−w)

increases. So the minimum is

attained when hp(w) = 1
p(1−w)

. This equation is equivalent to the equation

xp−2 = p(1 − x)

[
1 +

p−3∑
m=1

xm

m + 2

]
(p > 2). (2.4)

To check that this equation has a unique positive root x0 < 1, rewrite it as

g(x) := xp−2

p(1 − x)
−

(
1 +

p−1∑
m=3

xm−2

m

)
= 0.

Clearly, g(0) = −1, g(x) → +∞ as x → 1 − 0. So (2.4) has at least one root from (0, 1).
But from (2.4) it follows that a root from (1,∞) is impossible. Moreover, (2.4) is equivalent
to the equation

1

p(1 − x)
= 1

xp−2
+

p−1∑
m=3

xm−p

m
.

The left-hand side of this equation increases and the right-hand part decreases on (0, 1). So
the positive root is unique. Thus qp = 1/p(1 − x0). Furthermore, from (2.4) it follows

x
p−2
0 � p(1 − x0)

p−3∑
m=0

xm
0 = p

(
1 − x

p−2
0

)
since

p−3∑
m=0

xm
0 = 1 − x

p−2
0

1 − x0
.

This implies that

x0 � p−2

√
p

p + 1
and thus qp � 1

p
(
1 − p−2√ p

p+1

) .

But thanks to (2.3),

detp(A) �
∞∏

j=1

eqp |λj (A)|p = exp

[
qp

∞∑
k=1

|λj (A)|p
]

� exp
[
qpNp

p (A)
]
.

This proves (2.2).
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