

Home Search Collections Journals About Contact us My IOPscience

A bound for functions defined on a normed space

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 4087

(http://iopscience.iop.org/1751-8121/40/15/003)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.108 The article was downloaded on 03/06/2010 at 05:06

Please note that terms and conditions apply.

J. Phys. A: Math. Theor. 40 (2007) 4087-4091

doi:10.1088/1751-8113/40/15/003

A bound for functions defined on a normed space

M I Gil'

Department of Mathematics, Ben Gurion University of the Negev, PO Box 653, Beer-Sheva 84105, Israel

E-mail: gilmi@cs.bgu.ac.il

Received 30 January 2007, in final form 27 February 2007 Published 23 March 2007 Online at stacks.iop.org/JPhysA/40/4087

Abstract

Let *X* be a complex normed space and *f* a complex valued function defined on *X*. Assume that $f(A + \lambda B)(\lambda \in \mathbb{C})$ is an entire function for all $A, B \in X$ and there is a scalar monotone non-decreasing function *G* defined on $[0, \infty)$, such that $|f(A)| \leq G(||A||_X)(A \in X)$. It is proved that

 $|f(A) - f(B)| \leq ||A - B||_X G\left(1 + \frac{1}{2}(||A + B||_X + ||A - B||_X)\right).$

Applications of this inequality to perturbations of the regularized determinants of the von Neumann–Schatten operators are also discussed.

PACS numbers: 02.30.Sa, 02.30.Tb Mathematics Subject Classification: 47A50, 47B10

1. The main result

Let *X* be a complex normed space with a norm $\|\cdot\|_X$ and *f* a complex valued function defined on *X*. Assume that $f(A + \lambda B)(\lambda \in \mathbb{C})$ is an entire function for all $A, B \in X$ and there is a scalar monotone non-decreasing function *G* defined on $[0, \infty)$, such that

$$|f(A)| \leqslant G(||A||_X) (A \in X). \tag{1.1}$$

In the paper [8] the inequality

$$|f(A) - f(B)| \leq ||A - B||_X G(1 + ||A||_X + ||B||_X) \qquad (A, B \in X)$$
(1.2)

4087

was established. It is very useful for various applications, in particular, in the theory of the von Neumann–Schatten operators, Ruston–Grotendieck algebras, Fredholm determinants and in the theory of oscillations; cf [4, 6] and references therein.

In this paper we make inequality (1.2) sharper and consider applications of our inequality to perturbations of the determinants of the von Neumann–Schatten operators.

1751-8113/07/154087+05\$30.00 © 2007 IOP Publishing Ltd Printed in the UK

Theorem 1.1. Let f be a complex valued function defined on X, such that the function $f(A + \lambda B)(\lambda \in \mathbb{C})$ is entire for all $A, B \in X$. In addition, let there be a monotone nondecreasing function $G : [0, \infty) \to [0, \infty)$, such that (1.1) holds. Then

$$|f(A) - f(B)| \leq ||A - B||_X G(1 + \frac{1}{2}||A + B||_X + \frac{1}{2}||A - B||_X)$$
 $(A, B \in X).$

Proof. Put

$$g(\lambda) = f\left(\frac{1}{2}(A+B) + \lambda(A-B)\right).$$

Then $g(\lambda)$ is an entire function and thanks to the residue theorem,

$$f(A) - f(B) = g(1/2) - g(-1/2) = \frac{1}{2\pi i} \oint_{|z|=1/2+r} \frac{g(z) dz}{(z - 1/2)(z + 1/2)} \qquad (r > 0).$$

So

$$|g(1/2) - g(-1/2)| \leq (1/2 + r) \sup_{|z|=1/2+r} \frac{|g(z)|}{|z^2 - 1/4|}$$

But

$$|z^{2} - 1/4| = |(r + 1/2)^{2} e^{i2t} - 1/4| \ge (r + 1/2)^{2} - 1/4 = r^{2} + r$$
$$(z = (\frac{1}{2} + r) e^{it}, 0 \le t < 2\pi).$$

In addition,

$$|g(z)| = \left| f\left(\frac{1}{2}(A+B) + \lambda(A-B)\right) \right| = \left| f\left(\frac{1}{2}(A+B) + (r+1/2)e^{it}(A-B)\right) \right|$$

$$\leq G\left(\frac{1}{2}||A+B||_{X} + \left(\frac{1}{2}+r\right)||A-B||_{X}\right) \quad (|z| = 1/2+r).$$

Therefore

$$\begin{aligned} |f(A) - f(B)| &= |g(1/2) - g(-1/2)| \leq \frac{1/2+r}{r^2+r} G\left(\frac{1}{2} \|A + B\|_X + \left(\frac{1}{2} + r\right) \|A - B\|_X\right) \leq \frac{1}{r} G\left(\frac{1}{2} \|A + B\|_X + \left(\frac{1}{2} + r\right) \|A - B\|_X\right). \end{aligned}$$

Taking $r = ||A - B||_X^{-1}$, we get the required result.

Clearly, theorem 1.1 improves (1.2). It supplements the very interesting recent perturbation results; cf [1, 2, 7, 9] and references therein.

2. Perturbations of determinants

In this section, we apply theorem 1.1 to perturbations of determinants. Everywhere below *A* and *B* are linear operators in a separable Hilbert space *H*. For an integer $p \ge 1$, let S_p be the Neumann–Schatten ideal of compact operators in *H* having the finite norm $N_p(A) = [\text{Trace}(AA^*)^{p/2}]^{1/p}$ where A^* is the adjoint. By $\lambda_j(A)$ (j = 1, 2, ...) we denote the eigenvalues of *A* taking with their multiplicities and arranged in the decreasing order: $|\lambda_j(A)| \ge |\lambda_{j+1}(A)|$.

First let $H = \mathbb{C}^n$ be the complex *n*-dimensional Euclidean space.

Corollary 2.1. Let A and B be linear operators in \mathbb{C}^n . Then for any integer $p \ge 1$,

$$|\det(A) - \det(B)| \leq \frac{N_p(A-B)}{n^{n/p}} \left(1 + \frac{1}{2}(N_p(A+B) + N_p(A-B))\right)^n.$$

Indeed, due to the inequality for the arithmetic and geometric mean values,

$$|\det(A)| = \prod_{k=1}^{n} |\lambda_k(A)| \leqslant \left(\frac{1}{n} \sum_{k=1}^{n} |\lambda_k(A)|^p\right)^{n/p} \leqslant \frac{1}{n^{n/p}} N_p^n(A).$$

Now the required result is due to theorem 1.1.

Furthermore, let $A \in S_1$ and I be the unit operator. Then

$$|\det(I-A)| = \left|\prod_{j=1}^{\infty} (1-\lambda_j(A))\right| \leqslant \prod_{j=1}^{\infty} e^{|\lambda_j(A)|} \leqslant e^{N_1(A)}$$

Now theorem 1.1 implies

Corollary 2.2. Let
$$A, B \in S_1$$
. Then
 $|\det(I - A) - \det(I - B)| \le eN_1(A - B) \exp\left[\frac{1}{2}(N_1(A + B) + N_1(A - B))\right]$

Recall that for an $A \in S_p (p \ge 2)$ the regularized determinant is defined as

$$\det_p(A) := \prod_{j=1}^{\infty} (1 - \lambda_j(A)) \exp\left[\sum_{m=1}^{p-1} \frac{\lambda_j^m(A)}{m}\right].$$

The following inequality is valid:

$$\det_p(A) \leqslant \exp[c_p N_p^p(A)] \tag{2.1}$$

where constant c_p depends on p only, cf [3, p 1106], [4, p 194]. Besides, $c_2 \leq 1/2$, cf [5, Section IV.2]. Below we prove that

$$c_p \leqslant \frac{1}{p\left(1 - \sqrt[p-2]{\frac{p}{p+1}}\right)}$$
 (p > 2). (2.2)

Now theorem 1.1 implies

Corollary 2.3. Let $A, B \in S_p, p \ge 2$. Then $|\det_p(A) - \det_p(B)| \le N_p(A - B) \exp[c_p(1 + \frac{1}{2}(N_p(A + B) + N_p(A - B)))^p].$

Let us prove inequality (2.2). To this end consider the function

$$f(z) := \operatorname{Re}\left(\ln(1-z) + \sum_{m=1}^{p-1} \frac{z^m}{m}\right) \qquad (z \in \mathbb{C}).$$

For $r \equiv |z| < 1$,

$$|f(z)| = \left|\sum_{m=p}^{\infty} \frac{z^m}{m}\right| \leqslant \sum_{m=p}^{\infty} \frac{r^m}{m} = \int_0^r \sum_{m=p}^{\infty} s^{m-1} \, \mathrm{d}s = \int_0^r s^{p-1} \sum_{k=0}^{\infty} s^k \, \mathrm{d}s = \int_0^r \frac{s^{p-1} \, \mathrm{d}s}{1-s}.$$
Hence for any $w \in (0, 1)$

Hence for any $w \in (0, 1)$,

$$|f(z)| \leq \frac{r^p}{p(1-w)}$$
 (r < w). (2.3)

Furthermore, take into account that

$$|(1-z)e^{z}|^{2} = (1-2\operatorname{Re} z + r^{2})e^{2\operatorname{Re} z} \leqslant e^{-2\operatorname{Re} z + r^{2}}e^{2\operatorname{Re} z} = e^{r^{2}} \qquad (z \in \mathbb{C}),$$

since $1 + x \leq e^x$, $x \in \mathbb{R}$. So

$$\left| (1-z) \exp\left[\sum_{m=1}^{p-1} \frac{z^m}{m}\right] \right| = \left| (1-z) e^z \right| \left| \exp\left[\sum_{m=2}^{p-1} \frac{z^m}{m}\right] \right| \leqslant \exp\left[r^2 + \sum_{m=3}^{p-1} \frac{r^m}{m}\right] \qquad (p>2).$$

Therefore

Therefore,

$$f(z) \leqslant r^2 + \sum_{m=3}^{p-1} \frac{r^m}{m} \qquad (z \in \mathbb{C}).$$

But for any $w \in (0, 1)$,

$$\left[r^{2} + \sum_{m=2}^{p-1} \frac{r^{m}}{m}\right] r^{-p} \leqslant h_{p}(w) \quad (r \geqslant w) \quad \text{where}$$
$$h_{p}(w) = w^{-p} \left[w^{2} + \sum_{m=3}^{p-1} \frac{w^{m}}{m}\right] \quad (p > 2).$$

Thus $f(z) \leq h_p(w)r^p$ $(r \geq w)$. This inequality and (2.3) imply

$$f(z) \leq q_p r^p \qquad (z \in \mathbb{C}, \quad p > 2) \quad \text{where}$$
$$q_p := \min_{w \in (0,1)} \max\left\{h_p(w), \frac{1}{p(1-w)}\right\}.$$

But the function $h_p(w)$ decreases in $w \in (0, 1)$ and $\frac{1}{p(1-w)}$ increases. So the minimum is attained when $h_p(w) = \frac{1}{p(1-w)}$. This equation is equivalent to the equation

$$x^{p-2} = p(1-x) \left[1 + \sum_{m=1}^{p-3} \frac{x^m}{m+2} \right] \qquad (p>2).$$
(2.4)

To check that this equation has a unique positive root $x_0 < 1$, rewrite it as

$$g(x) := \frac{x^{p-2}}{p(1-x)} - \left(1 + \sum_{m=3}^{p-1} \frac{x^{m-2}}{m}\right) = 0.$$

Clearly, g(0) = -1, $g(x) \to +\infty$ as $x \to 1-0$. So (2.4) has at least one root from (0, 1). But from (2.4) it follows that a root from $(1, \infty)$ is impossible. Moreover, (2.4) is equivalent to the equation

$$\frac{1}{p(1-x)} = \frac{1}{x^{p-2}} + \sum_{m=3}^{p-1} \frac{x^{m-p}}{m}.$$

The left-hand side of this equation increases and the right-hand part decreases on (0, 1). So the positive root is unique. Thus $q_p = 1/p(1 - x_0)$. Furthermore, from (2.4) it follows

$$x_0^{p-2} \leqslant p(1-x_0) \sum_{m=0}^{p-3} x_0^m = p(1-x_0^{p-2})$$

since

$$\sum_{m=0}^{p-3} x_0^m = \frac{1 - x_0^{p-2}}{1 - x_0}$$

This implies that

$$x_0 \leqslant \sqrt[p-2]{rac{p}{p+1}}$$
 and thus $q_p \leqslant rac{1}{p\left(1 - \sqrt[p-2]{rac{p}{p+1}}
ight)}.$

But thanks to (2.3),

$$\det_p(A) \leqslant \prod_{j=1}^{\infty} e^{q_p |\lambda_j(A)|^p} = \exp\left[q_p \sum_{k=1}^{\infty} |\lambda_j(A)|^p\right] \leqslant \exp\left[q_p N_p^p(A)\right]$$

This proves (2.2).

Acknowledgment

This research was supported by the Kamea fund of Israel.

References

- Cai J and Chen G 2004 Perturbation analysis for the Drazin inverses of bounded linear operators on a Banach space J. Math. Res. Exp. 24 421–9
- [2] Caliceti E, Graffi S and Sjöstrand J 2005 Spectra of PT-symmetric operators and perturbation theory J. Phys. A: Math. Gen. 38 185–93
- [3] Dunford N and Schwartz J T 1963 *Linear Operators: Part II. Spectral Theory* (New York: Interscience)
- [4] Gohberg I, Golberg S and Krupnik N 2000 *Traces and Determinants of Linear Operators* (Basle: Birkháuser)
 [5] Gohberg I C and Krein M G 1969 *Introduction to the Theory of Linear Nonselfadjoint Operators (Trans. Mathem.*
- *Monographs* vol 18) (Providence, RI: American Mathematical Society) [6] Magnus W and Winkler S 1996 *Hill's Equations* (New York: Wiley)
- [7] Pietro A, González M and Martinón A 2003 On the perturbation classes of continuous semi-Fredholm operators Glasgo Math. J. 45 91–5
- [8] Seiler E and Simon B 1975 An inequality for determinants Proc. Natl Acad. Sci. 72 3277-8
- [9] Su W and Zhong H 2006 The generalized West decomposition of operators and other compact perturbation problems Acta Math. Sin., Engl. Ser. 22 515–22